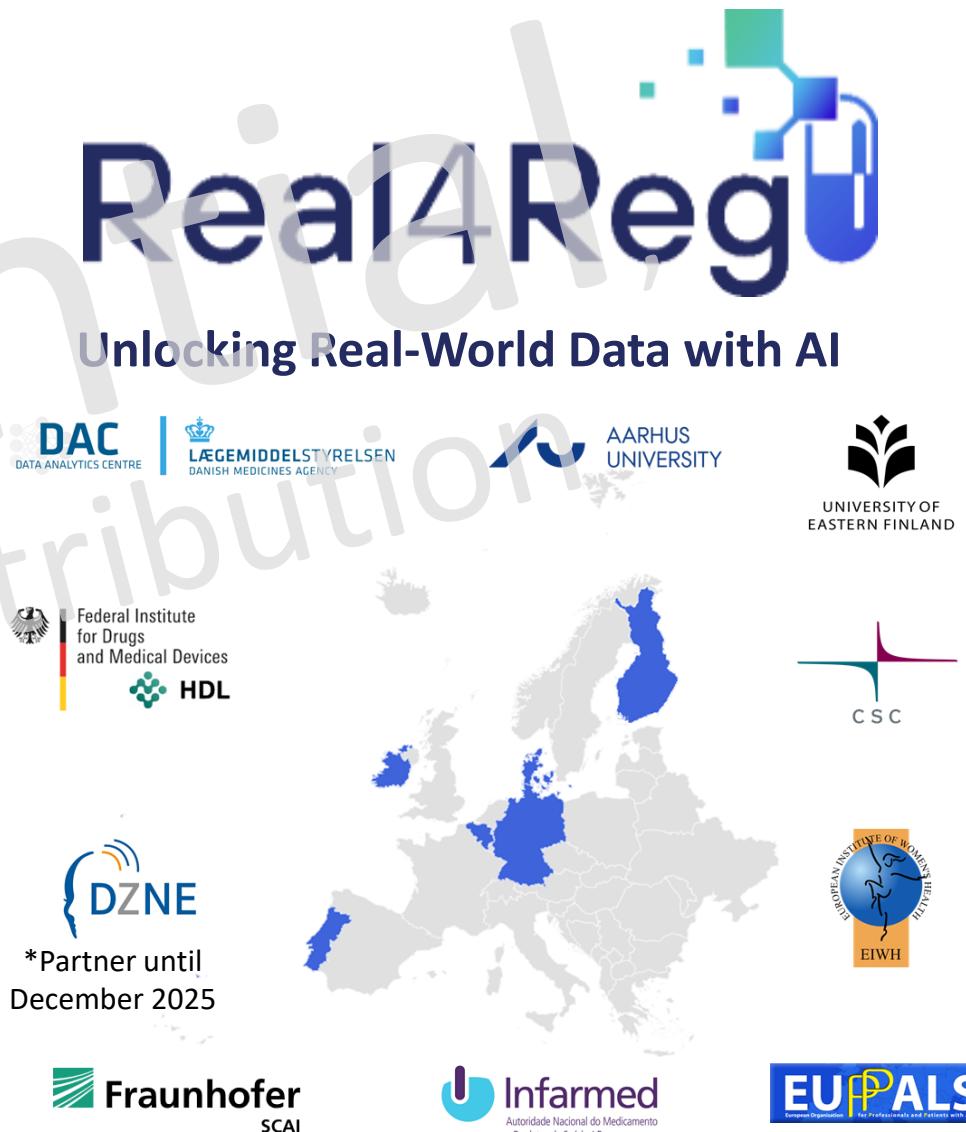


Use cases in preauthorisation & evaluation

Use case 1

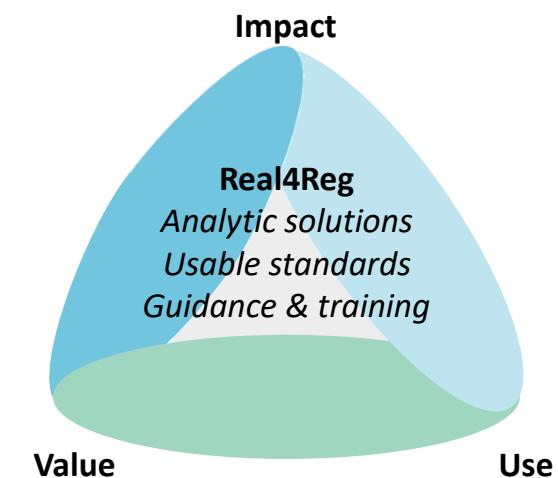

Expert workshop 27 January 2026

Lead: Aarhus University (Professor Vera Ehrenstein, Associate professor Erzsébet Horváth-Puhó, statistician István Bakos)

Contributors: DKMA, UEF, Fraunhofer SCAI, BfArM, Infarmed, CSC

Real4Reg

- Development, optimisation and implementation of **artificial intelligence (AI) methods for RWD analyses** in regulatory decision-making and HTA along the product lifecycle.
- **Duration:** 4 years (January 2023 – December 2026)
- **Consortium:** 10 partners from 6 European countries (Leader BfArM)


Real4Reg - Databases

- Real4Reg partners from four different European countries process **individual's personal data** accruing in national/regional electronic **health records databases**

Country	Size of source population	Data provenance/type
Denmark	5.9 Million	<ul style="list-style-type: none">Demographics (age, sex)ProceduresDiagnoses (hospital/specialist/cancer registry)DispensingsHealthcare utilisation
Finland	5.6 Million	<ul style="list-style-type: none">Demographics (age, sex)ProceduresDiagnoses (hospital/specialist/cancer registry)DispensingsHealthcare utilisationSocioeconomic data
Germany	72.8 Million	<ul style="list-style-type: none">Demographics (age, sex)Claims - diagnosesClaims - prescriptionsSocioeconomic data
Portugal	10.3 Million	<ul style="list-style-type: none">Demographics (age, sex)ProceduresDiagnosesDispensingsHealthcare utilisation

Real4Reg - Objectives

- Development of **new and optimised methods** for RWD analysis, addressing the challenges and opportunities across different health care systems. Ultimately, this will support **better decision-making** about medicines, benefiting patients' health.

Real4Reg – Use Cases

- To address the need to **demonstrate the potential of RWE in regulatory decision-making and HTA**, Real4Reg is employing different highly relevant use cases from regulatory practice and across the product lifecycle.

Background and Rationale: Use Case 1

- **Randomised controlled trials (RCTs)** remain the primary requirement for the initial authorisation of treatments based on their efficacy and safety
- **Real-world evidence (RWE)** – evidence generated from real-world data (RWD) – has been traditionally used for assessing postauthorisation safety and effectiveness monitoring
- Regulators, including the European Medicines Agency (EMA), recognise the potential of **RWE to complement RCTs in regulatory decision-making**, including the preauthorisation phases, especially where RCTs have limitations (e.g., rare diseases, severe conditions, vulnerable subgroups, lack of equipoise)

Barriers to RWE use in the Preauthorisation & Evaluation Phase

- Lack of awareness about the available data sources
- Stakeholders' skepticism/concern about data quality
- Slow data access for regulatory and HTA purposes

Work package 1 overview

Pre-Authorisation & Evaluation

Description of
Study Population
Amyotrophic Lateral Sclerosis,
Breast Cancer

Use Case 1

Use Case 2

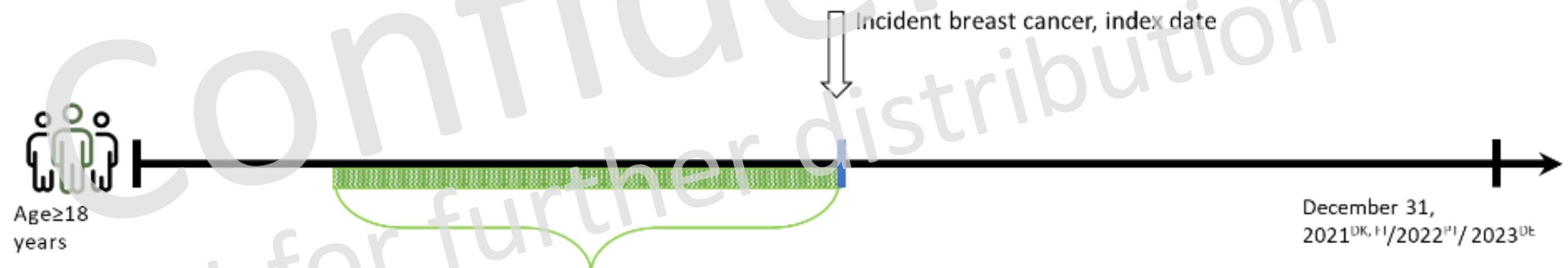
Historical Controls
WP3
Amyotrophic Lateral Sclerosis,
Breast Cancer

Confidential, not for further distribution

Rationale for Selecting ALS and Breast Cancer

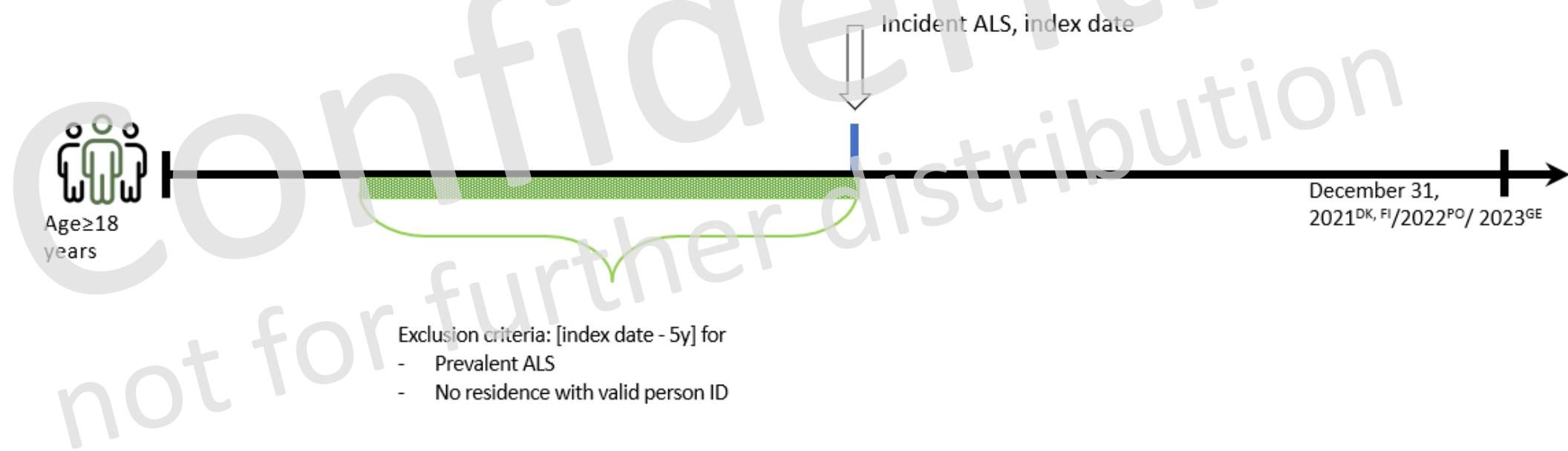
- The two diseases represent two **diverse** preauthorisation settings in which RWE use may be relevant
- Breast cancer the most **common** and a well studied malignancy in women, with well-developed treatment protocols. Prognosis differs by patient characteristics. Men with breast cancer represent an **understudied small subgroup** with less optimal prognosis than women
- ALS is a **rare** motor neuron disorder, characterised by high fatality and absence of cure. Pharmacotherapy with riluzole is the only approved option used for symptom relief

Rationale for Selecting ALS and Breast Cancer


Because evidence from RCTs in rare breast cancer subgroups and in ALS patients is difficult to obtain due to small number of affected patients and strict eligibility criteria required by RCTs, these patient populations may stand to benefit from use of RWE in the preauthorisation phase

Use Case 1: Specific Objectives

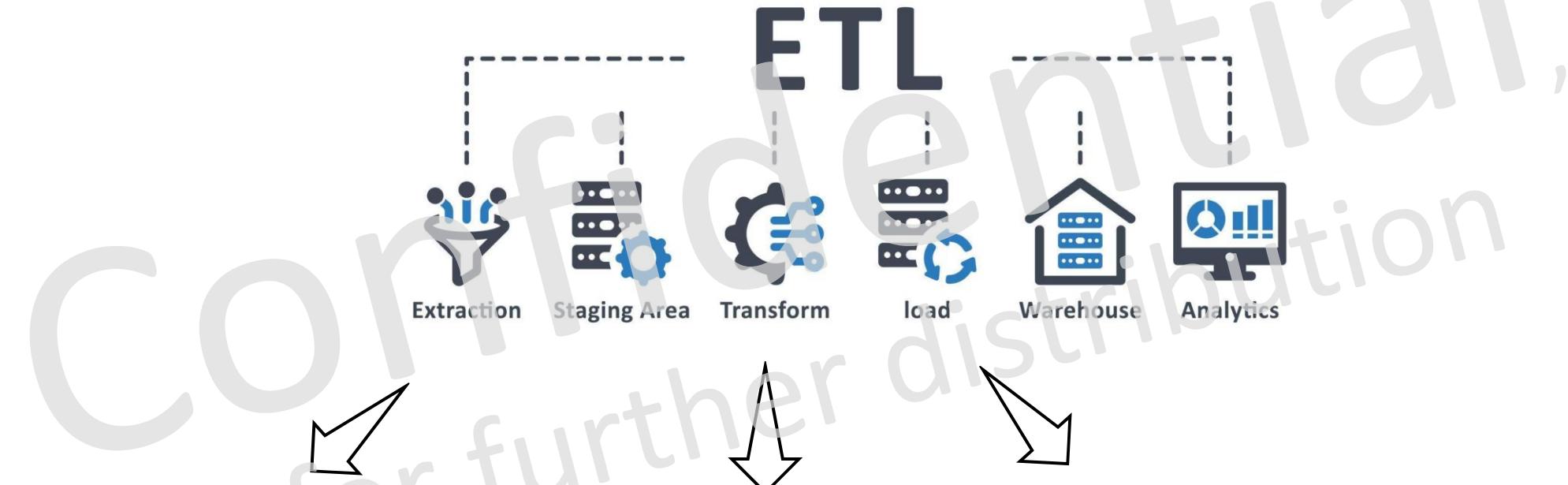
- Obtain **data access** and carry out data pre-processing tasks including quality control and conversion of the native data in each data source to the OMOP common data model (CDM)
- Provide a **descriptive overview** of the breast cancer and ALS populations, including premorbid characteristics, disease characteristics, treatment, and prognosis – as a proof of concept
- Examine sources of **heterogeneity** of the results across the country-specific patient populations and across data provenance, coding practices, accessibility, representativeness, completeness, temporal variation in variables' availability, and validity


Methods – Study Population and Design

Breast Cancer

Methods – Study Population and Design

ALS


Data Access and Management

1. Ethical permissions and other legal requirements fulfilled
2. **Protocol-based data application at each country's data custodian**
3. **Upon access: local data checking, cleaning, plausibility checks**
4. Data coding according to the common protocol with local “flavours”

Protocol available from the HMA-EMA Catalogues of real-world data sources and studies EUPAS105544

OMOP Implementation

Extract Transform Load Flow

Medical databases
from Finland, Denmark,
Portugal, ...

Cleaning and normalizing

OMOP Common Data
Model

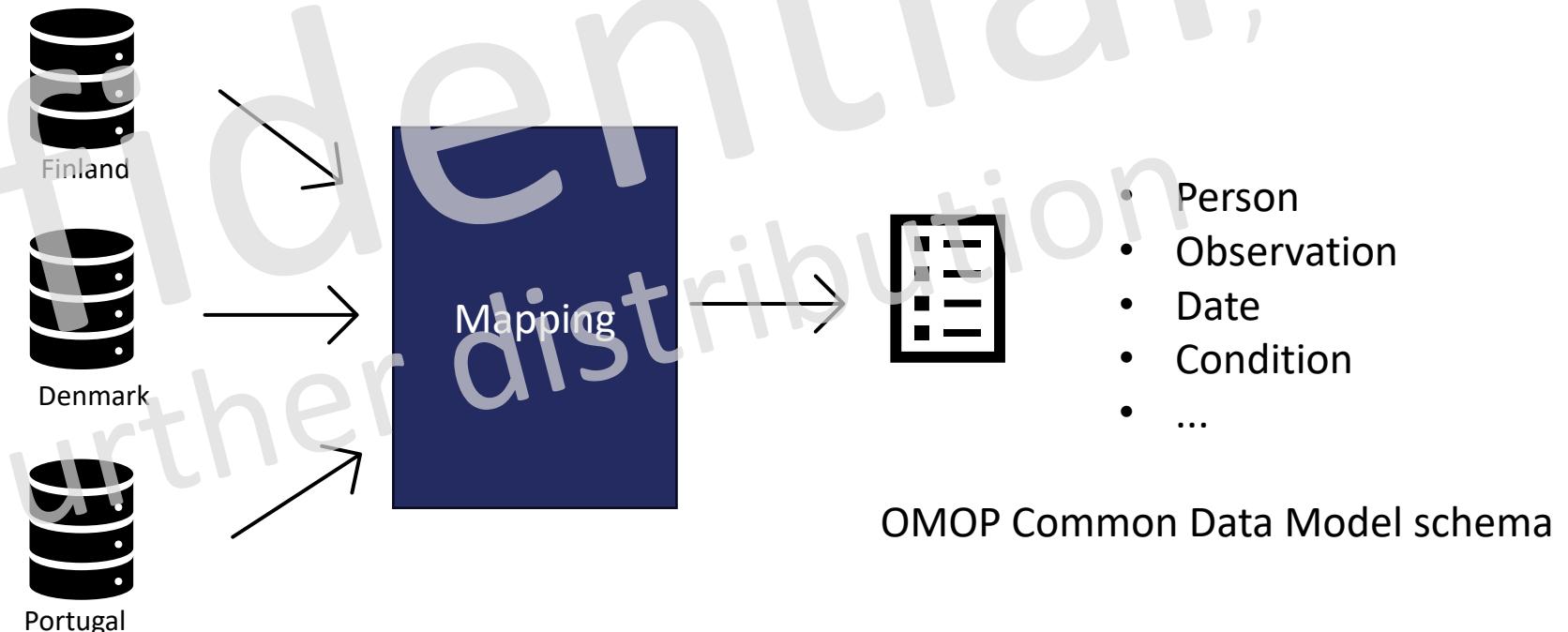
ETL Process Insights

Initial Design

- Based on available metadata

Adapted Design

- After access to data
- Different variable names and table structure
- Switching to in-process database due to memory issues


Adaptation of scripts was required

Learnings

Importance of early availability of data and of accurate design of metadata

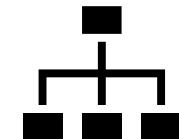
Target Schema Mapping

- Effective mapping of country-specific codes to a standardized vocabulary is essential for data integration and analysis in health research.
- This mapping ensures that disparate data sources can be aligned and analyzed cohesively within the **Observational Medical Outcomes Partnership (OMOP)** framework.

OMOP Common Data Model schema

Vocabulary Mapping through Athena

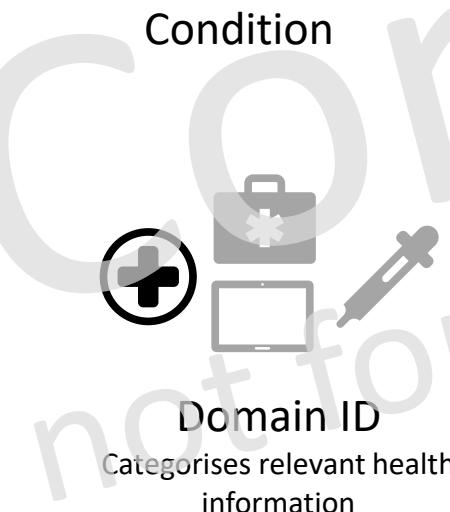
- Athena, a searchable database maintained by the **Observational Health Data Sciences and Informatics** (OHDSI), facilitates this mapping process.
- It assists users in identifying local medical codes and matching them to their corresponding OMOP equivalents by providing crucial information during the mapping process.


Domain ID

Categorises relevant health information

Concept IDs

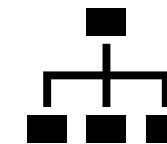
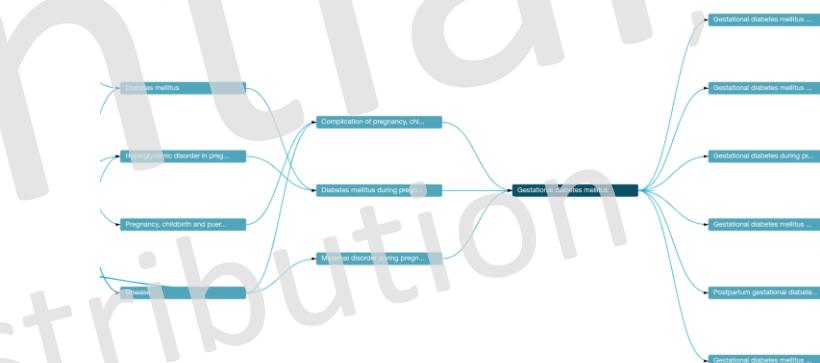
Unique identifiers for related medical concepts



Hierarchical relationships

Parent and child terms

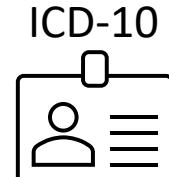
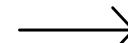
Vocabulary Mapping through Athena: Example



Example: **Gestational diabetes mellitus**

40395652
Vocabulary: SNOMED
Concept Class ID: Disorder

Concept IDs
Unique identifiers for related medical concepts

Hierarchical relationships
Parent and child terms



Challenges with Athena

Missing specific codes

- Country-specific codes for, e.g., special reimbursement or socioeconomic codes are not present

Missing entire vocabularies

- Includes e.g. ICD10-GM or CM
- Misses Danish healthcare classification system SKS

Example

G12.2 E-G

G12.2

Example: certain chemotherapy treatment regimens are non-standard or country-specific; Usage of HemOnc vocabulary for mapping non-standard vocabulary procedures

BWHA135	VCR	0.76	APPROVED	35807043	Vincristine monotherapy
BWHA429	ponatinib	0.58	APPROVED	35804084	Ponatinib monotherapy
BWHC31	goserelin	0.73	APPROVED	35804276	Goserelin monotherapy
BWHA253	gemcitabine+oxaliplatin+capecitabine	0.57	FLAGGED	35804755	CapeOx
BWHA447	binimetinib	0.63	APPROVED	35806140	Binimetinib monotherapy
BWHA176	fludarabine+fosfamide+cyclophosphamide+mitoxantrone (FMC)	0.53	APPROVED	35804577	FCM

Learnings:

- Creation of manual mappings necessary
- Simplification of extended Danish ICD codes which were more specific than international ICD-10 version
- Mapping of unique ICD codes was unfeasible

Missing Information In Source Data

- OMOP CDM is very detailed and assumes much information to be recorded in the source

In reality ...

Mixtures of structured data and free text
E.g. number of dispensed drugs in Finland

Manual editing required for extracting information
Only possible for a selected subset

Missing details
E.g.
drug_exposure_end_date
and days_supply not reported in all cases

Learnings:
Importance of standard input formats and necessity of complete information for drug administration

Ambiguity of Standard Mappings: ATC

- Introducing standard vocabularies:

- ATC (Anatomical Therapeutic Chemical Classification):** A classification system that categorises drugs based on their anatomical and therapeutic properties, assigning a unique code to each drug or group of drugs.

Example: Metformin

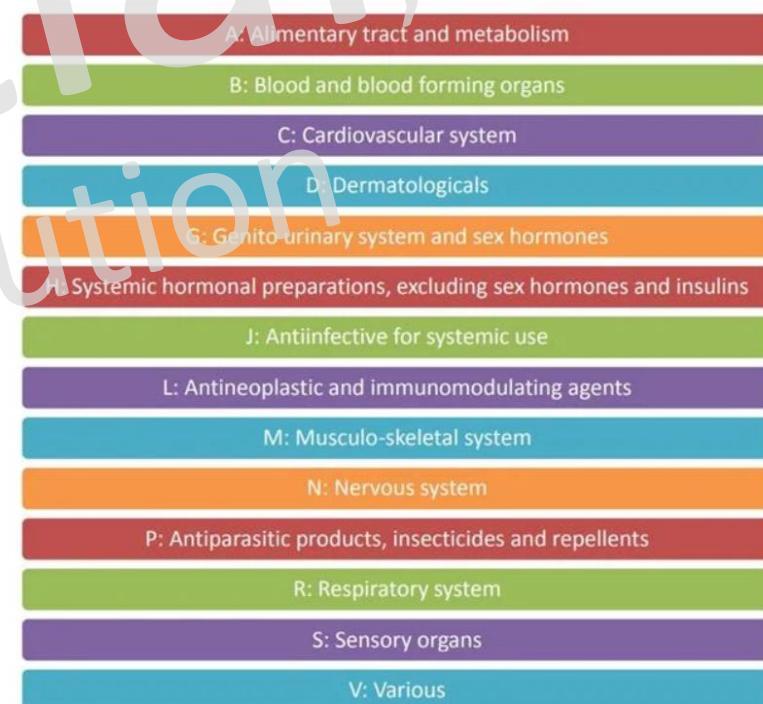
A	Alimentary tract and metabolism (1 st level, anatomical main group)
A10	Drugs used in diabetes (2 nd level, therapeutic subgroup)
A10B	Blood glucose lowering drugs, excl. insulins (3 rd level, pharmacological subgroup)
A10BA	Beta-agonists (4 th level, chemical subgroup)
A10BA02	Metformin (5 th level, chemical substance)

<https://www.who.int/tools/atc-ddd-toolkit/atc-classification>

ATC 1st level

The system has fourteen main anatomical or pharmacological groups (1st level). The ATC 1st levels are shown in the figure.

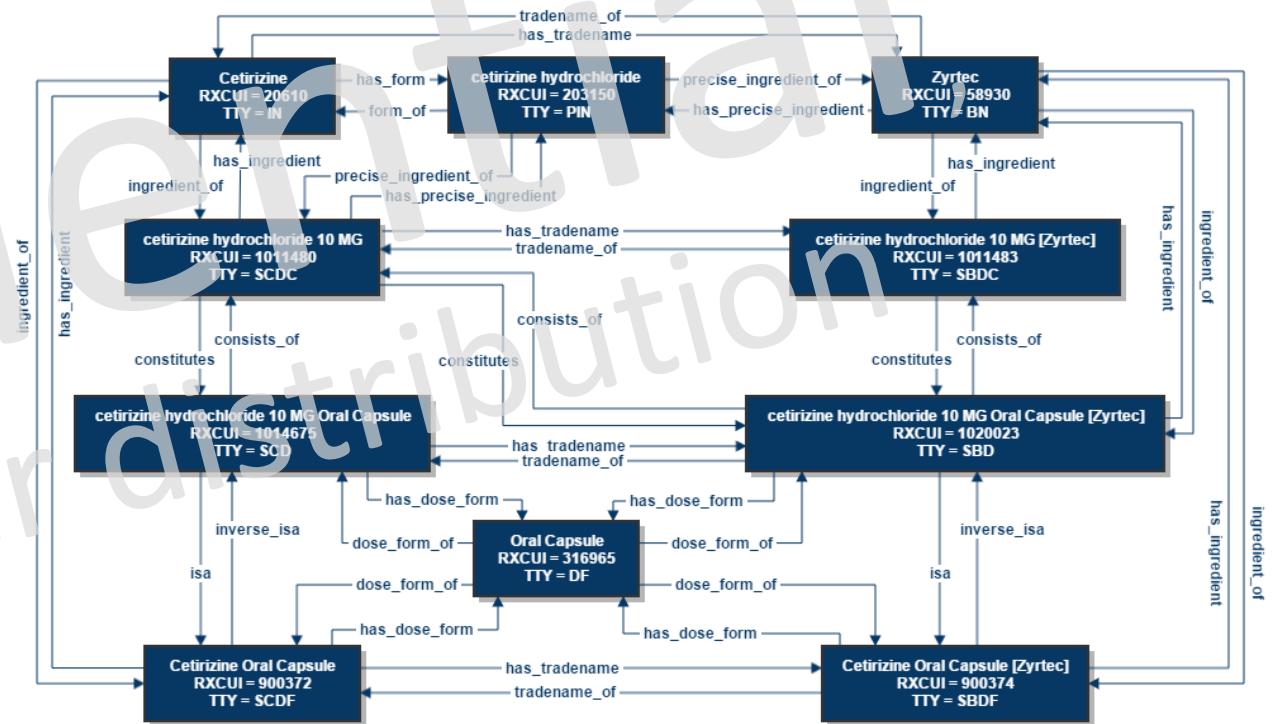
ATC 2nd level


Pharmacological or Therapeutic subgroup

ATC 3rd& 4th levels

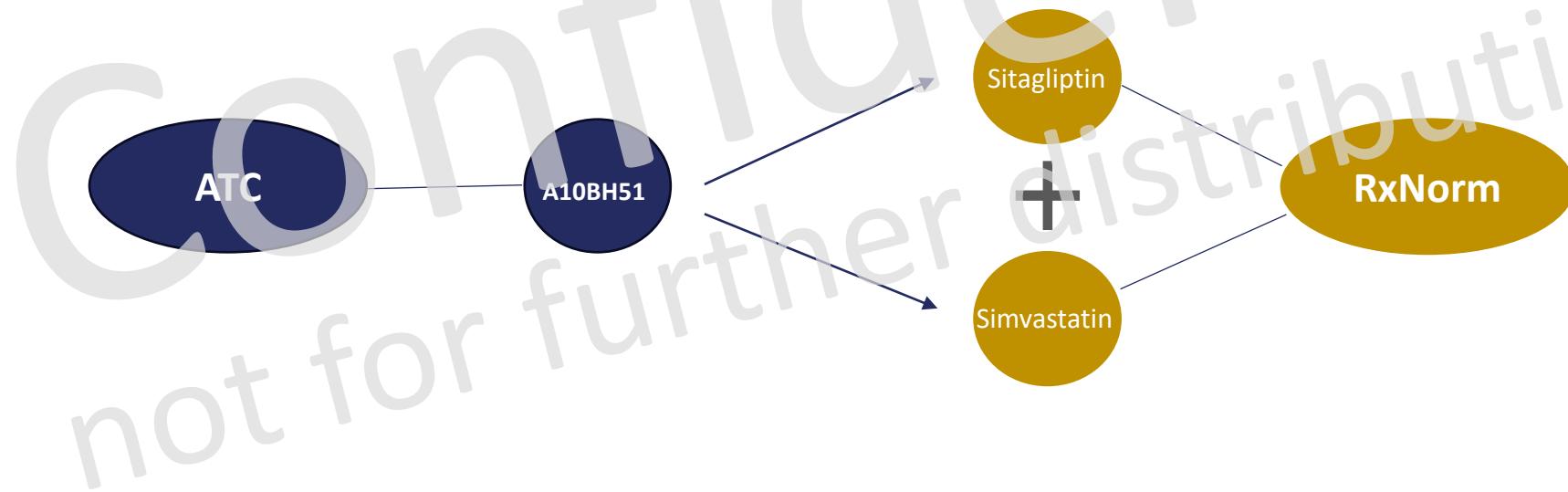
Chemical, Pharmacological or Therapeutic subgroup

ATC 5th level

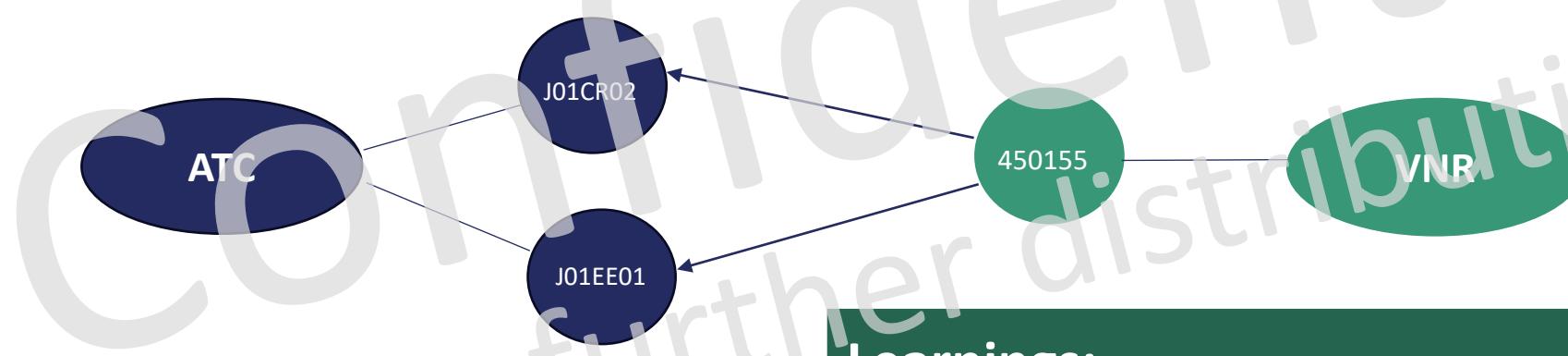

Chemical substance

Ambiguity of Standard Mappings: RxNorm

- Introducing standard vocabularies:


- RxNorm:** A standardised nomenclature for clinical drugs that provides normalised names and identifiers for medications and links them to various drug classification systems
- Linking country specific codes to standard vocabularies:** FinOMOP added VNR (Nordic Article Number) which links to standard concepts from RxNorm (A six-digit identification code for a specific medicine with marketing authorisation in the Nordic countries)

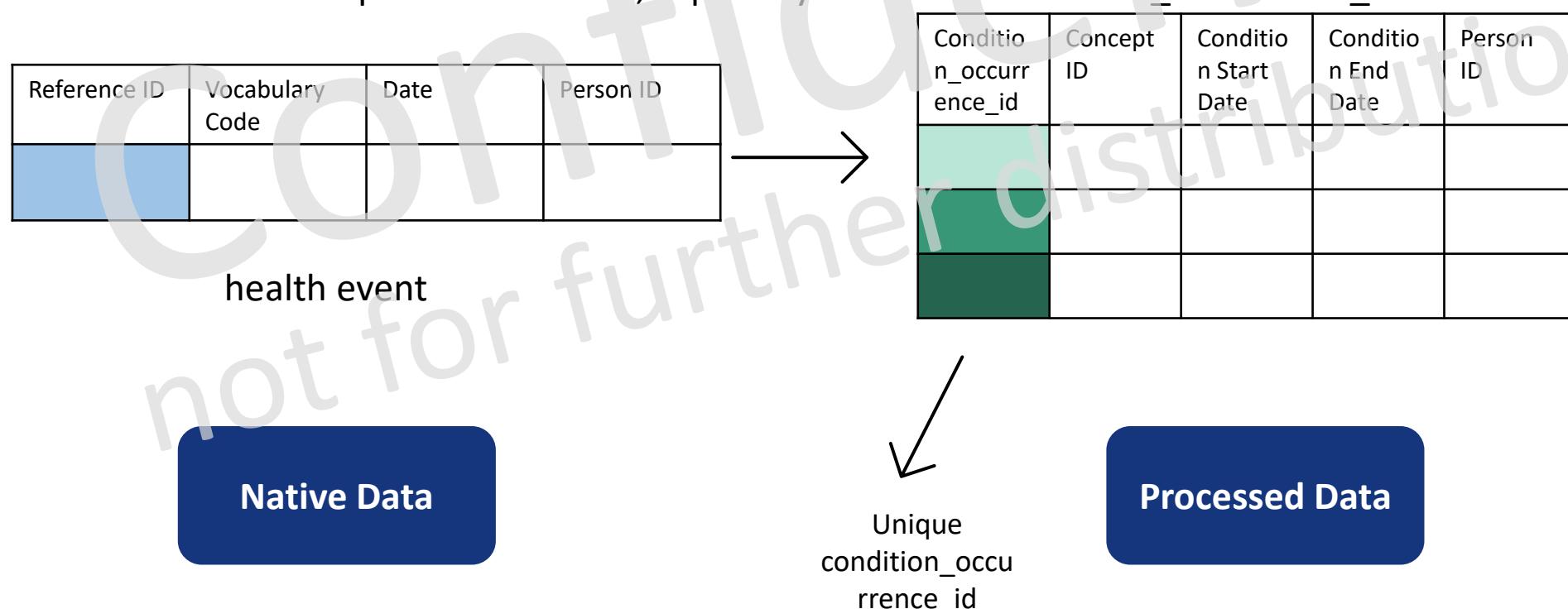
<https://www.nlm.nih.gov/research/umls/rxnorm/overview.html>


Ambiguity of Standard Mappings: ATC and RxNorm

- **Challenges of One-to-Many Mappings:**
 - One-to-many mappings occur when ATC codes represent products consisting of multiple components, leading to mapping to distinct RxNorm concepts.

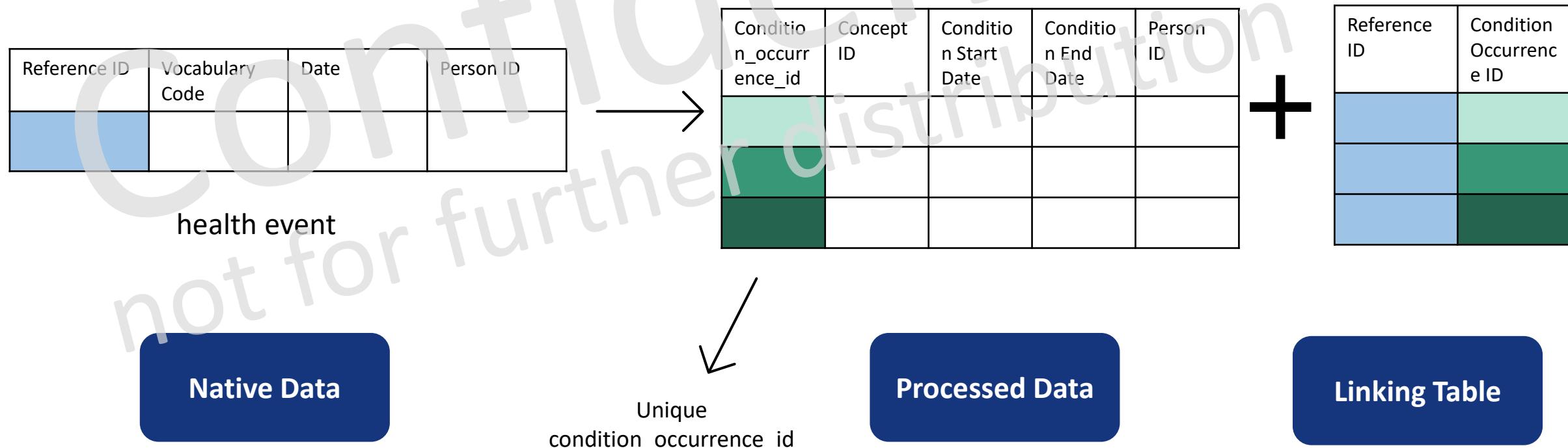
Ambiguity of Standard Mappings: ATC and VNR

- **Challenges of One-to-Many Mappings:**
 - VNRs should be unique, but exceptions were found where they represent the same ATC codes due to **multiple indications or formulation variations**



Learnings:

Relying solely on standard RxNorm concepts can lead to an increase in drug counts, making manual verification of mapped codes necessary or the direct use of source concept IDs (from ATC or VNR) advisable.


Ambiguity of Standard Mappings: Impact

- **Problem:** Data inflation results when processing a single row of native data generates multiple rows in the OMOP format.
-> The standard OMOP format lacks a mechanism for preserving the linkage between these related rows, complicating the identification of unique health events, especially since each `condition_occurrence_ID` is distinct.

Solving Ambiguity of Standard Mappings

- Solution:** An additional identifier for the source drug product UUID linking to the occurrence_id in OMOP is needed to accurately track affected rows during analysis.

Solving Ambiguity of Standard Mappings

Reference ID	Vocabulary Code	Date	Person ID

Condition_occurrence_id	Concept_ID	Condition_Start_Date	Condition_End_Date	Person_ID

Reference ID	Condition Occurrence ID

Learnings:

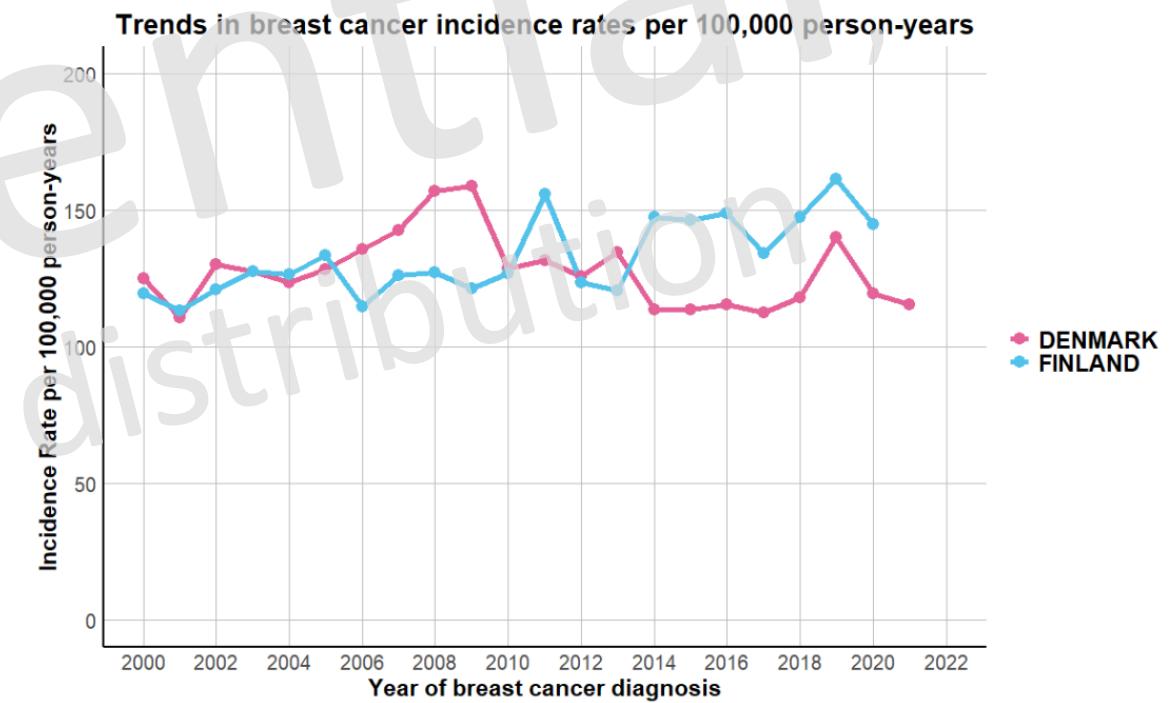
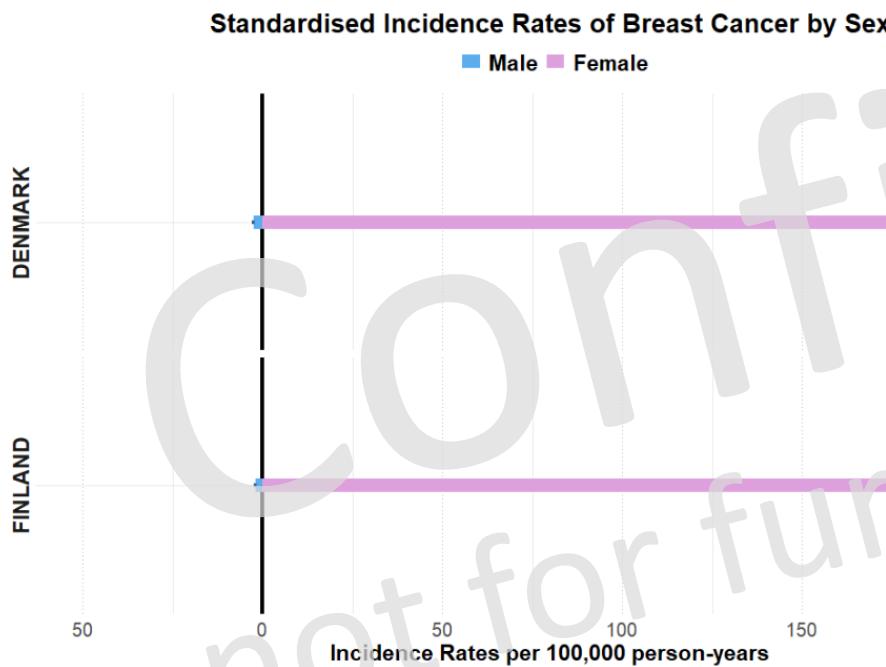
- Establishing unique identifiers for linking occurrence IDs to unique source events is critical to improve the accuracy and clarity of health data interpretations.

Computational Demands

- Source data can be very large depending on population size and observation period.
- Secure environments can come with limited hardware and/or software limitations.
 - We encountered data tables (e.g., 65 GB) that exceeded available RAM (64 GB).
 - Environments that are not set up for multiuser usage or machine learning workflows.
 - Secure access makes usage more difficult as even remote -> secure environment clipboard access is deactivated.
 - Software cannot always be easily installed.

Learnings:

- Employing incremental file processing strategies and leveraging high-performance database systems are crucial for efficient data handling.
- Effective import and export protocols necessary for data flow and operational efficiency
- Adequate access to necessary software and stable internet connectivity is essential to avoid disruptions.



Confidential,
not for further distribution

Use Case 1 Results

Data Access and Analysis

- **Planned:** single analyst writes analytic script for OMOP-converted data in all countries
- **Workarounds:** due to delays in data access and need to change data custodians to enable relevant data access, each country conducted analyses of data in native (pre-OMOP) format ahead of the analyses in the OMOP-converted data.
- Descriptive statistics of the breast cancer and ALS populations:
 - Incidence rates
 - Demographics, comorbidities, treatment
 - Disease progression, including survival

Results – Breast Cancer: Incidence Rates (Native)

Results on incidence rates of breast cancer available from Denmark and Finland

Results – Breast cancer, Women: Demographics

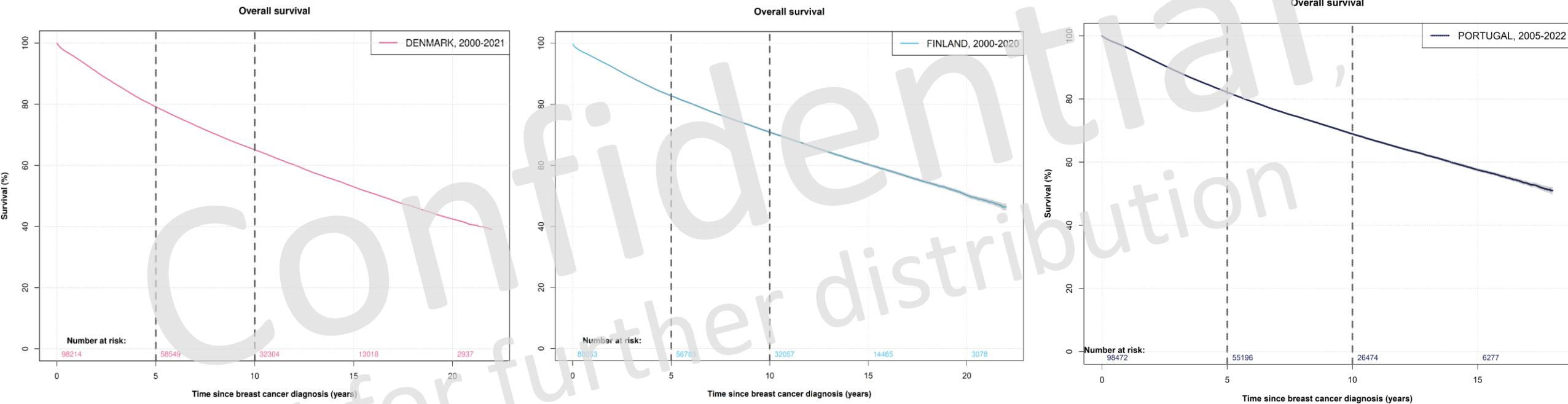
Characteristic	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549
Age at diagnosis, years			
18 - 34	1525 (2%)	1005 (1%)	2445 (3%)
35 - 44	7240 (7%)	5205 (6%)	11989 (12%)
45 - 54	18745 (19%)	18215 (21%)	22747 (23%)
55 - 64	25330 (26%)	25160 (29%)	22588 (23%)
65 - 74	23490 (24%)	20315 (23%)	20133 (21%)
>=75	21220 (22%)	17945 (20%)	17647 (18%)
Employment			
Self-employed	NA	3180 (4%)	NA
Upper-level employee	NA	8860 (10%)	NA
Lower-level employee	NA	18265 (21%)	NA
Manual worker	NA	6535 (7%)	NA
Pensioner	NA	45260 (52%)	NA
Other	NA	5720 (7%)	NA
NA	100%	0	100%

Results – Breast Cancer, Women: Comorbidities

	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549
Comorbidities			
Psychiatric disorders	740 (1%)	3260 (4%)	327 (0%)
Dementia and Alzheimer's	1210 (1%)	2620 (3%)	640 (1%)
Cardiovascular diseases	7840 (8%)	22935 (26%)	8009 (8%)

Results – Breast Cancer, Women: Treatment (12 Months Post-diagnosis)

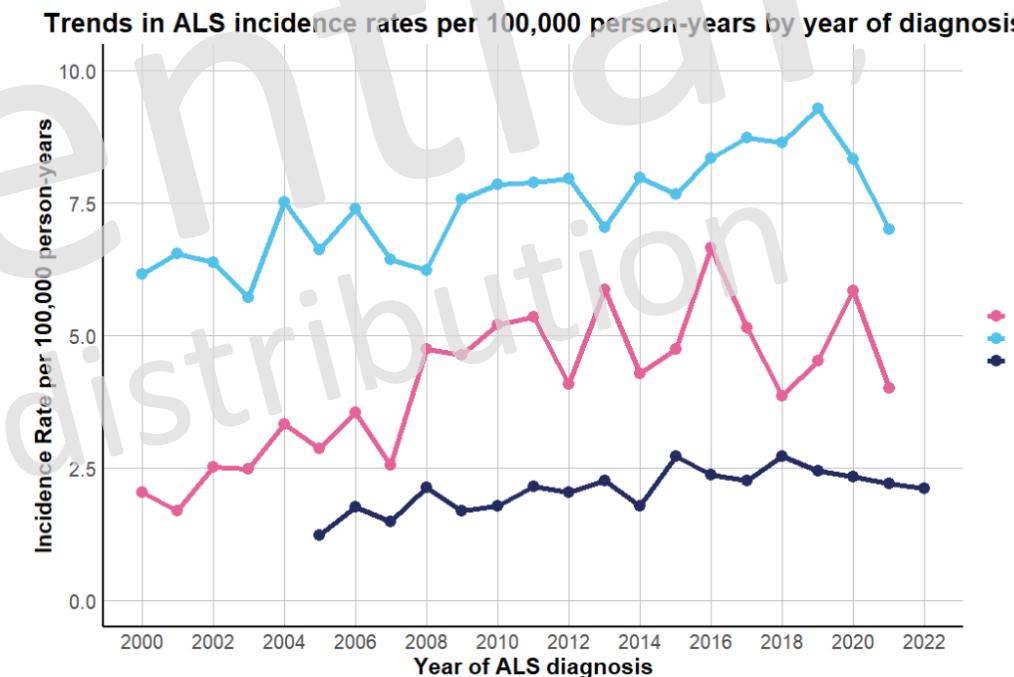
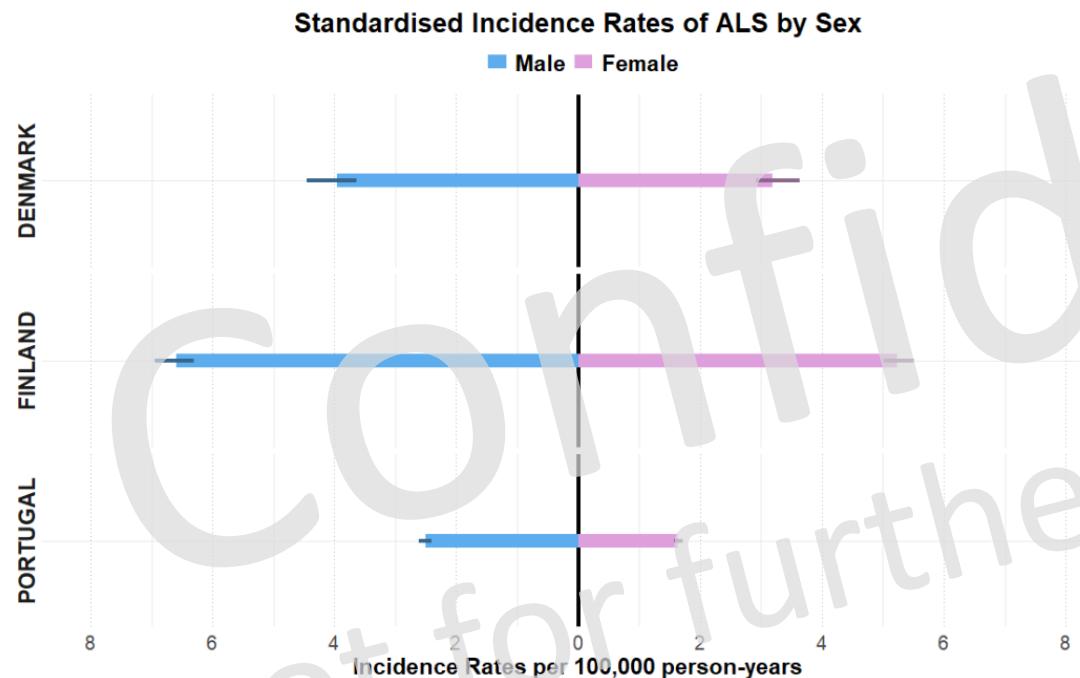
	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549
Radiotherapy	56755 (58%)	21485 (24%)	29019 (30%)
Chemotherapy	36370 (37%)	21745 (25%)	57047 (58%)
Total or partial lymphadenectomy	57665 (59%)	33500 (38%)	28752 (29%)
Mastectomy	33155 (34%)	37030 (42%)	34732 (36%)
Breast conservation surgery	47265 (48%)	42150 (48%)	39678 (41%)
Hormonal therapy for breast cancer	36420 (37%)	58225 (66%)	29944 (31%)
HER directed treatments	9400 (10%)	4750 (5%)	6234 (6%)


Results – Breast Cancer, Women: Entire Follow-up

Characteristic	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549
Signals for disease progression			
Stage at diagnosis			
TNM Stage: 1	42845 (44%)	NA	13795 (14%)
TNM Stage: 2	23320 (24%)	NA	6062 (6%)
TNM Stage: 3	2875 (3%)	NA	401 (0%)
TNM Stage: NA	28515 (29%)	100%	77842 (79%)
Finland Stage: 1 localised	NA	40290 (46%)	NA
Finland Stage: 2 non-localised	NA	29625 (34%)	NA
Finland Stage: NA	100%	17930 (20%)	100%
Primary tumour size			
No growth beyond primary cells	5795 (6%)	100 (0%)	4978 (5%)
Tumour growth beyond primary cells	76330 (78%)	20150 (95%)	21549 (22%)
Undefined growth	15425 (16%)	320 (1%)	71022 (73%)
Metastases at diagnosis			
Metastasis - spread to lymph nodes	30155 (31%)	8545 (40%)	8059 (8%)
Metastasis - spread to other organs	3475 (4%)	300 (1%)	496 (1%)
Other signals of progression			
New primary malignancy	8050 (8%)	5995 (7%)	9385 (10%)
Breast cancer specific mortality	16535 (17%)	12000 (14%)	8699 (16%)
All-cause mortality	32890 (34%)	25875 (29%)	24746 (25%)

Results – Breast Cancer, Women: Entire Follow-up

Characteristic	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549
Signals for disease progression			
Stage at diagnosis			
TNM Stage: 1	42845 (44%)	NA	13795 (14%)
TNM Stage: 2	23320 (24%)	NA	6062 (6%)
TNM Stage: 3	2875 (3%)	NA	401 (0%)
TNM Stage: NA	28515 (29%)	100%	77842 (79%)
Finland Stage: 1 localised	NA	40290 (46%)	NA
Finland Stage: 2 non-localised	NA	29625 (34%)	NA
Finland Stage: NA	100%	17930 (20%)	100%
Primary tumour size			
No growth beyond primary cells	5795 (6%)	100 (0%)	4978 (5%)
Tumour growth beyond primary cells	76330 (78%)	20150 (95%)	21549 (22%)
Undefined growth	15425 (16%)	320 (1%)	71022 (73%)
Metastases at diagnosis			
Metastasis - spread to lymph nodes	30155 (31%)	8545 (40%)	8059 (8%)
Metastasis - spread to other organs	3475 (4%)	300 (1%)	496 (1%)
Other signals of progression			
New primary malignancy	8050 (8%)	5995 (7%)	9385 (10%)
Breast cancer specific mortality	16535 (17%)	12000 (14%)	8699 (16%)
All-cause mortality	32890 (34%)	25875 (29%)	24746 (25%)



Results – Breast Cancer, All: Overall Survival

Results – Breast Cancer, Women/Men: Age

Age at diagnosis, years	WOMEN			MEN		
	Denmark	Finland	Portugal	Denmark	Finland	Portugal
	Total=97550	Total=87840	Total=97549	Total=665	Total=420	Total=923
18 - 34	1525 (2%)	1005 (1%)	2445 (3%)	5 (1%)	5 (1%)	<10
35 - 44	7240 (7%)	5205 (6%)	11989 (12%)	20 (3%)	10 (2%)	<40
45 - 54	18745 (19%)	18215 (21%)	22747 (23%)	60 (9%)	50 (13%)	100 (11%)
55 - 64	25330 (26%)	25160 (29%)	22588 (23%)	135 (20%)	105 (24%)	199 (22%)
65 - 74	23490 (24%)	20315 (23%)	20133 (21%)	215 (33%)	125 (30%)	300 (33%)
>=75	21220 (22%)	17945 (20%)	17647 (18%)	225 (34%)	130 (31%)	285 (31%)

Results – ALS: Incidence Rate (Native)

Results – ALS: Demographics

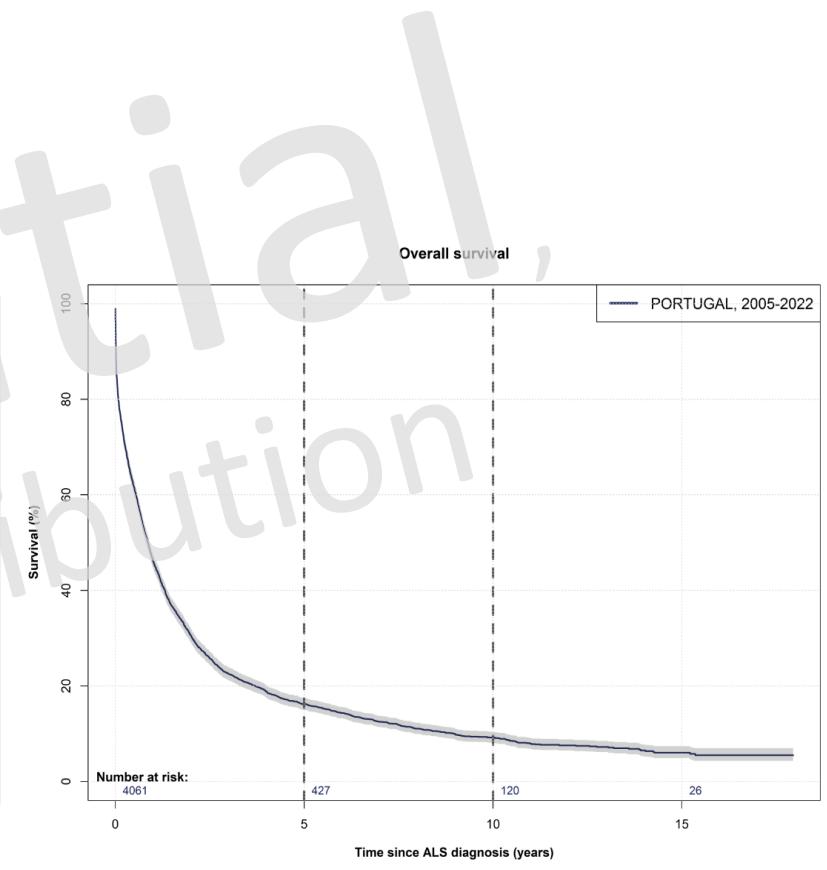
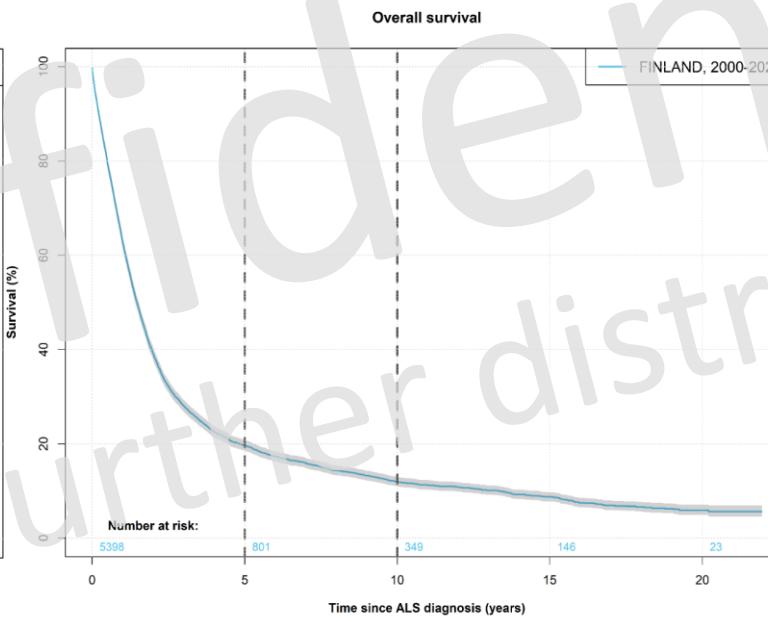
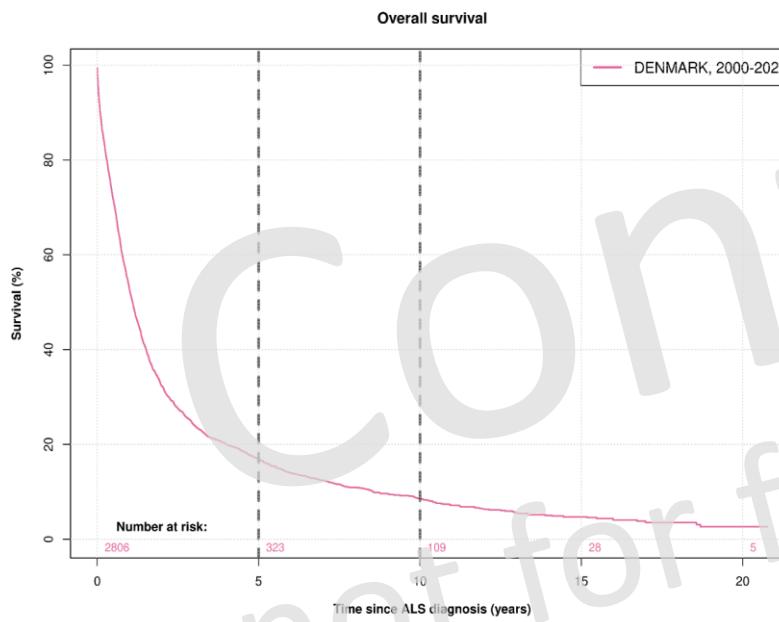
Characteristic	Denmark N=2810	Finland N=5400	Portugal N=4061
Sex			
Female	1265 (45%)	2615 (48%)	1825 (45%)
Male	1545 (55%)	2785 (52%)	2236 (55%)
Age, years			
18 - 34	25 (1%)	60 (1%)	58 (1%)
35 - 44	95 (3%)	145 (3%)	154 (4%)
45 - 54	285 (10%)	605 (11%)	385 (9%)
55 - 64	680 (24%)	1440 (27%)	907 (22%)
65 - 74	1060 (38%)	1835 (34%)	1435 (35%)
>=75	655 (23%)	1315 (24%)	1122 (28%)
Median (quartiles)	68 (60-75)	68 (59-75)	69 (61-76)
Employment			
Self-employed	NA	160 (3%)	NA
Upper-level employee	NA	305 (6%)	NA
Lower-level employee	NA	445 (8%)	NA
Manual worker	NA	420 (8%)	NA
Pensioner	NA	3725 (69%)	NA
Other	NA	345 (6%)	NA
NA	100%	0	100%

Results – ALS: Clinical Characteristics

Characteristic	Denmark	Finland	Portugal
	N=2810	N=5400	N=4061
Comorbidities			
Psychiatric disorders	15 (1%)	175 (3%)	24 (1%)
Dementia and Alzheimer's	115 (4%)	325 (6%)	249 (6%)
Cardiovascular diseases	455 (16%)	1920 (36%)	1290 (32%)
Respiratory diseases	205 (7%)	655 (12%)	363 (9%)
Other muscular atrophy types	20 (1%)	NA	17 (0%)
Characteristics in 5 years before ALS diagnosis			
Fasciculations, cramps, muscle twitching	45 (2%)	225 (4%)	16 (0%)
Dysarthris	95 (3%)	700 (13%)	49 (1%)
Fronto-temporal dementia	10 (0%)	40 (1%)	13 (0%)
Mood disorders (incl. depression, bipolar)	85 (3%)	300 (6%)	169 (4%)
Other mild motor impairment	505 (18%)	1350 (25%)	33 (1%)
Anxiety	20 (1%)	95 (2%)	43 (1%)

Results – ALS: Treatment (12 Months Post-diagnosis)

	Denmark N=2810	Finland N=5400	Portugal N=4061
Intensive care unit service admission with mechanical ventilation	255 (9%)	75 (1%)	76 (2%)
Non-invasive ventilation	560 (20%)	NA	880 (22%)
Riluzole	1635 (58%)	1600 (30%)	NA
Antiepileptics [incl. gabapentinoids, levetiracetam]	105 (4%)	340 (6%)	226 (12%)
Skeletal muscle relaxants	485 (17%)	480 (9%)	274 (14%)
Benzodiazepines and related drugs	1180 (42%)	1440 (27%)	634 (33%)
Antidepressants/mood disorder medication	1200 (43%)	1820 (34%)	1018 (52%)




Results – ALS: Treatment (12 Months Post-diagnosis)

	Denmark N=2810	Finland N=5400	Portugal N=4061
Intensive care unit service admission with mechanical ventilation	255 (9%)	75 (1%)	76 (2%)
Non-invasive ventilation	560 (20%)	NA	880 (22%)
Riluzole	1635 (58%)	1600 (30%)	NA
Antiepileptics [incl. gabapentinoids, levetiracetam]	105 (4%)	340 (6%)	226 (12%)
Skeletal muscle relaxants	485 (17%)	480 (9%)	274 (14%)
Benzodiazepines and related drugs	1180 (42%)	1440 (27%)	634 (33%)
Antidepressants/mood disorder medication	1200 (43%)	1820 (34%)	1018 (52%)

Results – ALS: Prognosis (Entire Follow-up)

	Denmark N=2810	Finland N=5400	Portugal N=4061
Respiratory infection [pneumonia]	750 (27%)	1470 (27%)	1232 (30%)
Intensive care unit service admission with mechanical ventilation	440 (16%)	150 (3%)	125 (3%)
Non-invasive ventilation	805 (29%)	NA	1229 (30%)
PEGs (percutaneous gastrostomy)	380 (13%)	90 (2%)	547 (13%)
Cachexia (wasting syndrome)	80 (3%)	10 (0%)	162 (4%)
Acute respiratory failure	180 (6%)	145 (3%)	682 (17%)
ALS specific mortality	2010 (72%)	3810 (71%)	1397 (65%)
All-cause mortality	2350 (84%)	4420 (82%)	3368 (83%)

Results – ALS: Overall Survival

Results – ALS: Native vs OMOP Analyses, Selected Characteristics

	Denmark		Portugal	
	NATIVE N=2810	OMOP N=2991	NATIVE N=4061	OMOP N=4071
Sex				
Female	1265 (45%)	1340 (45%)	1825 (45%)	1827 (45%)
Male	1545 (55%)	1651 (55%)	2236 (55%)	2244 (55%)
Age, years				
18 - 34	25 (1%)	34 (1%)	58 (1%)	58 (1%)
35 - 44	95 (3%)	102 (3%)	154 (4%)	154 (4%)
45 - 54	285 (10%)	309 (10%)	385 (9%)	387 (10%)
55 - 64	680 (24%)	713 (24%)	907 (22%)	908 (22%)
65 - 74	1060 (38%)	1131 (38%)	1435 (35%)	1438 (35%)
≥ 75	655 (23%)	702 (23%)	1122 (28%)	1126 (28%)
Median (quartiles)	68 (60-75)	68 (59-74)	69 (61-76)	68 (60-75)
Comorbidities				
Psychiatric disorders	15 (1%)	26 (1%)	24 (1%)	24 (1%)
Dementia and Alzheimer's disease	115 (4%)	157 (5%)	249 (6%)	249 (6%)
Cardiovascular diseases	455 (16%)	456 (15%)	1290 (32%)	1292 (32%)
Respiratory diseases	205 (7%)	203 (7%)	363 (9%)	364 (9%)
Other muscular atrophy types	20 (1%)	53 (2%)	17 (0%)	17 (0%)

Main Findings/Lessons Learned

- Data access delays is an important **barrier** to timely RWE generation
- Correctness of data delivery cannot be automatically assumed and needs to be a standard **quality control** item for researcher before data use
- **Heterogeneity** of the results across the country-specific patient populations stems from the true differences, and artefacts of data flow, completeness of recording and reimbursement practices, and data provenance
- The heterogeneity, including type, validity, and completeness should be used for assessing a given data source **fitness for purpose** in relation to specific research/regulatory questions

Conclusions

- Use of real-world-data in regulatory preauthorisation/evaluation decisions requires expert knowledge to assess the impact of data limitations
- Harmonisation of data to the same structure does not remove the underlying heterogeneity of data quality, flow and completeness
- Results for breast cancer and ALS are generated for illustration and should not be taken as indicative of disease epidemiology, however, they are broadly consistent with the published evidence

Thank you!

Prof. Vera Ehrenstein
Aarhus University
Department of Clinical Epidemiology
E-Mail: ve@clin.au.dk

Real4Reg administration contacts:

Real4Reg management
Federal Institute for Drugs and Medical Devices
Division 5 Research

real4reg@bfarm.de

Real4Reg communication
INFARMED, IP.
Information and Strategic Planning Division

real4reg@infarmed.pt

www.real4reg.eu

Funded by
the European Union

Horizon Europe
Project No 101095353

Real4Reg

AARHUS
UNIVERSITY

Fraunhofer
SCAI